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A New Theory of Gravity
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ABSTRACT

A new relativistic theory of gravity is ﬁresented. This theory
agrees with all experiments to date. It is a metric theory; it ;s
Lagrangian-based; and it possesses a preferred frame with conformally-
bflat space slices. With an appropriate choice of certain adjustable
functions and parameters, this theory possesses precisely the same post-

Newtonian limit as general relativity!
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results to date are summarized in the '"Varenna lecture notes' of Wwill.

I. INTRODUCTION

Since 1970, the grévitation research group at Caltech has_béeh analyz-
ing the experimental foundations of relativistic theories of gravity. Our
' 1
Those results had led us to hope that current experiménts were good enough
to rule out all theories except (1) general relativity, and (ii) theories.
which reduce to general relativity when their édjustable parameters are
appropriately adjusted (e.g., the Brans-Dicke-Jordan thepfy which reduces
to general relativity as w + ©). We also had come to hope that general
relativity could be distinguished from all other viable ﬁetric theories by
the form of its post-Newtonian limit (PPN parameter values B=yvy=1,.

@ =0y =03=L =g =t3=g, =0). |

The purpoée of thié paper is to explode our hopes. More particularly,
this paper.will formulate a new theory of gravity ﬁhich (for_certain values
of its édjustablé parameters) has precisely the same post-Newtonian limit
as general relativity, but can never reduce to general relativity in the
full; non-linear case.

To diétinguish experimentally between.tﬁis new theory and general
relativity, one will have to use non—éést—Néwtonian experiments. These
could include; (i) gravitational-wave experiments, (ii) cosmological
observations, and (iii) (in the distant future) post-post-Newtonian

experiments. The present paper will not discuss such possibilities{

. Rather, it will merely present the new theory (8II) and compute its post-

Newtonian limit (appendix)-.



II. PRESENTATION OF THE THEORY

. We pfeserit the new theory using the notation and format of the
author's recent "compendium of gravitation theories'.'.2 (In particular,

note that we set ¢ =G = 1.)

a. Gravitational fields present: A flat ,ba'ckground‘me_tric

I’l = nij dxi ® dxd ; scalar fields ¢ ‘and t ; a one-form field

-~

- i h|
=8yy &x @dx .

-~

Y = wi dxi ; and the physical metric (

b. Arbitrary paré.meters and functions: Three arbitrary functions f1(¢),
f2(¢)’, f3(¢), and one arbitrary parameter e ; in the post-Newtonian

limit, there are four arbitrary parameters, a, b, d, ‘and e (see below).

c. Prior geometrj: The foilowing constraints are imposed,. 3 priori, on
the geometrical relationships among the gravitational fields:
(i) flatness of the metric n |
| (Riemann temnsor constructed from l]) =0 ; | (1a)

(ii) "meshing constraints" on t and n

€3 =0 | o (1b)

-t t

ij
SIS

-+, | (1e)

(Here énd below a slash denotes a covafiar_lt derivative with

ij

. Tespect to I] , and n ‘is the inverse of nij.)

1§ . . . - .
".(111-). algebraic equation for the physical metric in terms of the

_"auxiliary’gravitational fiel&s" N>¢,t,9
g=£,0) + [£(9)-£,(9)]dt @ dt +) @de'+ ey . (Le)
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- d. Preferred coordinate system: The pfior—geometric constraints (1)
guarantee the existence of a preferred coordinate system in which
(i) the time coordinate is equal to the scalar field t ; (ii) the

components of | are Minkowskiian

gy = diagonal (1,-1,-1,-1) (2a)

(i1i) ¢ 'is purely spatiél
by =0 5 o | (2b)
(iv) the physical line element gijdx dx* . 1is

2

as? = f1(¢)dt2— f2(¢)(dx2+dy2

+dzz)-P2w1dxdt + 2y dydt
+ 2 dxdt + 29,dydt + 2pdzdt . C(20)
e. Lagrangian: The field equationsAare detérmined by an action principle
S fJf a4 =0 , - , : (3a)
where the Lagrangian denéity Z is
| s ‘ TR 13
& =T+ Wy by T - 2 0
. ij 2 Jn .
+ 2[£5(6) +11[¢ 4t 077} Vo | (3b)

_: Here L, is the standard "interaction Lagrangian" obtained by taking
the standardeagrangian for matter and nongravitational.fields in flat
séacetime, and replacing‘the Minkowskii metric by g (equivaience
principle). The quantities =-g and -n are the determinénts'of

I|—gijll and ||—nij||. In the action principle (3a) one is to vary



the standard métte; and nongravitational fields that appear in LI s
and the gravitationai fields ¢ and y , while maintaining the
prior-geometric constraints (1). In the preferred coordinate system

(2) the Lagrangian density reduces to

;<;=-Li/:§ + /ey o wa;3+ 26 , ¢,a+ 2f3(¢)¢’£ ¢’t (4)

(Summation on repeated Greek indices).

Field equations: The nongravitational field equations derived from

this action principle take on their standard general relativistic

~form ("equivalence principle;" "comma-goes-to-semicolon rule'). In

the preferred coordinate system, the gravitational field equations

reduce to
wB,aa = 4me/-g TOB
_ - (5)
: . L ij : =
JEENOLIN, ;3 O 2n/-g T (Bgij/3¢) =0

Here the stress—energy tensor is the same one as appears in the field
equations of general relativity:
- 2 3(/~g LI)
Ti' = - 13
. /-g 0g

Tkl = gikgleij S (6)

Post-Newtonian limit: Expand the arbitrary functions fl(¢),’f2(¢),

and f3(¢) in powers of ¢ . In order that the metric will become

flat in the absence of gravity (¢:=¢»$O), require fl(O) = f2(0) =1.

' In order that the theory will reduce to Newton's theory in the weak-

fiéld, slow-motjion limit, require f1(¢)‘= 1-2¢ + +++ . Define



a,b,d to be the coefficients of the first unconstrained terms (''post-

Newtonian terms'" in the expansions:

£1(0) =1 - 26 + 2697 + =+- (7a)
£,(0) = 1+ 289+ eee . (7b)
£5(0) = d+ oor . S (7¢)

Then the post-Newtonian limit of the.theory reduces to the Nordtvedt-

Will3 PPN formalism with PPN parameter values
Yy=a, B=b, a =-2-ba-4, a,=-d-1,
6] = ( . (8)

(The proof is given in an appendix.)

Comparison with experiment. By comparing'the PPN-parameter values (8)
with the list of expetimental limits on PPN parameters as given by Ni,4

one learns that this theory agrees with all experiments to date if

0.96 < a < 1.12

‘0.84 < b < 1.34

- 9)
-1.03 < d < -0.97
- -2.2 < et2a < -1.8
. Comparison with géneral-relativity. Notice that if
a=b=1, d=-1, e=-4 ' (10)

then this theory has precisely the same post-Newtonian limit as general

relativity! Thus, no post-Newtonian experiment can hope to make a

5



clean distinction between this theory and general relativity.

3 and N16 have

Comparison with other Lagrangian-based theories. Will
shown that all Lagrangian-based metric theories must satisfy the PPN

parameter constrainté
@3 =8) =8 =f3=g, =0 . o an

Notice ﬁhat the theory preseﬁted here has arbitrary values for all the
remainiﬁg, unconstrained pafameters. Thus, this‘theory possesses the
moét général pos;—Newtonian 1limit permitted for any Lagrangian—baséd
metric theofy.7.'Thi§ means fhat no post-Néwtonian expériment can hope
to make a_clean distinction between this theory and any other Lagrangian

based, metric theory.

Special cases. When the.arbitrary functions f1(¢), f2(¢), and f3(¢)

are suitably specialized, one obtains the following theories:
"Papapetrou I and II" [see §S§III.D.v and vi of Reference 2], "Rosen"
[see §III.D.ix of Reference 2], and Ni's "Lagrangian-based, stratified

theory" [see 8III.D.vii of Reference 2].

. Conservation laws,».Global conservation laws for this theory will be

discussed in a future paper.
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APPENDIX

COMPUTATION OF THE POST-NEWTONIAN LIMIT

To obtain the post-Newtonian limit of ourjtheory, we proceed as fol-
lows. For convenience, we shall work in the préferred coordinate system.
Let

¢ =9, + 06, + 0(6) .

whereb ¢1i= 0(2), ¢2 = 0(4), and wBZ = 0(3)~. [nge "b(n)" means of

n "Iy

order "c in a post-Newtonian expansion.] Correct to post-Newtonian

order, thé field equations (5) are

) |
-d 3_% - v2¢1 - v21¢2 = mp[1 + (3a-1)UJ[1 + (2-2b)U

ot
+ v2(l+a) + 3a£' + 1, (A2)

2 = '
V_wsz 4me p i
The 0(2) part of the field equations is

2
v ¢1_

.—41rp , - : . (A3)
i.e., 7

wherev U 1is the Newtonian potential. The 0(3) part is

Vzlp 82 = 4me p Vg ' o (A5)



i.e.,

The 0(4)

2

p(x',t) VB(X',t)dx'
[ 0

|x - x'|

part is

V29, = ~dU_, - 4T0[(3a+1- 2b)U + (1+a)v2+ 3a§-+.H]

Let X be the solution of

i.e.,

sz = =20 ,

X=-JP|§-§'|¢5‘ :

We can transform equation (A7) to

V2(¢2— %d *X t:t) = =4mp[ (3a+l - 2b)U + (1+a)v2+ 3a%+ 1]

Therefore

where -

vZo

Combining

‘According

1+a 3.»r
2 2 a'p]

= -4mpl3 T +2@at1-20)0 + T2 U+

equations (A4) and (All), we find

1

6 =U+20+5dx

+ 0(6) .
to equations (2c), (A6) and (Al3), the physical metric is

Boo = 1 20 + 2bU°- 40 - dX -+ 0(6)

8

(46)

(A7)

(A8)

(A9)

(A10)

(1)

(A12)

(A13)

(A14)



Bog = —eVa » (Al4)

8y = —6(’18(1+ 2ap) .

. By using .the gauge transformation

ot _ 0,1
x‘. x + 2 x,o
at a (A15)
X =X ’
we can transform the metric into the form
t 2
Bon = 1 - 20 + 2bU°- 40 + 0(6) ,
v 1 . -1 .
gy = Ga- v - L ar + o),  (a16)
g T = -(1 + 2av)
aB ’
where
: ox",t)v, (x")(x,- x')(x - x')
Wo(x,t) = J ~ B~ B B o o g4 (A17)
o~ 13
. |x - x'|

By comparing this with the PPN metric as given by Will and Nordtvedt,8 we

obtain the PPN parameter values listed in equation (8). .
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Exception: One could coﬁceive of--but one has no examples of--
Lagrangian—-based, metric theories with‘posthewtqnian limits that
are more complex than the Nordvedt-Will 9-parameter formélism. Our .
results do not apply to such theories.
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